全国服务热线:18888889999
在线报名
欧陆注册CURRICULUM
欧陆资讯 NEWS CENTER
联系我们 CONTACT US
手机:
18888889999
电话:
0898-66889888
邮箱:
admin@youweb.com
地址:
海南省海口市玉沙路58号
欧陆资讯
你的位置: 首页 > 欧陆资讯
粒子群算法运行太慢怎么办?—修改一下就能提速94%
2024-05-13 09:35:29 点击量:

? ? ? ? 不管是初学者还是精通智能优化算法(粒子群算法,遗传算法等)的朋友,相信你们都对智能优化算法运行之慢深有体会,对于比较复杂的问题,经常出现运行一次几小时,调试一次几小时的情况。调试了这么多年代码,智能优化算法对我来说算是老朋友了,平时也积累了一些提高智能优化算法运行效率的办法,在此分享给大家。

这篇博客以粒子群算法为例,说明使用matlab编程时,如何减少粒子群算法运行时间。要解决的目标函数为:

其中,变量x和y都属于[-10,10]的区间,要求出f(x)的最大值。

matlab绘图代码和图像如下:

 

从函数图形可以看出,该函数有很多局部极大值点,而极值位置为(0,0),在(0,0)附近取得极大值。

粒子群算法(particle swarm optimization,PSO)最早由Kennedy和Eberhart在1995年提出的,源于对鸟类捕食行为的研究,算法中每个粒子都代表问题的一个潜在解,每个粒子对应一个由适应度函数决定的适应度值。粒子的速度决定了粒子移动的方向和距离,速度随自身及其他粒子的移动经验进行动态调整,从而实现个体在可解空间中的寻优。

PSO算法首先在可行解空间中初始化一群粒子,每个粒子都代表极值优化问题的一个潜在最优解,用位置、速度和适应度值三项指标表示该粒子特征,适应度值由适应度函数计算得到,其值的好坏表示粒子的优劣。粒子在解空间中运动,通过跟踪个体极值Pbest和群体极值Gbest更新个体位置。个体极值Pbest是指个体所经历位置中计算得到的适应度值最优位置,群体极值Gbest是指种群中的所有粒子搜索到的适应度最优位置。粒子每更新一次位置,就计算一次适应度值,并且通过比较新粒子的适应度值和个体极值、群体极值的适应度值更新个体极值Pbest和群体极值Gbest位置。

实现粒子群算法求解上述优化问题的原始代码如下:

 

当种群规模为500,最大迭代次数为500时,粒子群算法某次运行结果如下:

我们可以看到,大约1秒的时间,粒子群算法可以求出最优解为[-1.4828e-9,-5.222e-10],非常接近最优解[0,0]。

其实这份代码在运行时间上还有很大的改进空间,我们可以分块来看。%% 清除变量、%% 设置种群参数与%% 种群初始化这几步基本上都是最优的写法。主要是求适应度和迭代求最优解这里存在循环语句,可以改进写法。

首先来看%% 初始的适应度这块代码:

 

这里用到的循环语句,运行时间肯定会偏长。那么我们可不可以改写这部分代码,去掉循环语句,同时保持效果不变?当然是可以的,但首先需要改写一下fun函数,初始的fun函数是这样的:

 

由于我们最开始默认传入fun函数的变量pop只代表一个粒子,所以是一个1×2的变量,就可以令x = pop(1),令y = pop(2),计算得到的输出变量fitness也是一个1×1的标量。如果输入变量pop是一个n×2的变量,就不能这样写了,需要把fun函数改写成:

 

这样就可以输入一个n×2的变量pop,输出一个n×1变量fitness,直接计算所有粒子的适应度。同时在主函数部分也需要把代码修改为:

 

同时也省去了前面初始化的一些代码。

再来看迭代求最优解的部分。首先这里也包括了求适应度的部分,可以直接沿用上面的成果。对于速度和位置的更新,还有进一步改进的空间。

 

这部分速度慢的原因同样也是因为有一个for循环,使用matlab中向量化的运算可以避免使用for循环,同时保持代码的效果不变,具体如下:

 

? ? ? ? 1)速度的更新。在更新速度时,可以采用矢量化的方式。由于对每个粒子都需要生成随机数r1和r2,所以r1和r2的维度应该都是sizepop×1,另外为了可以使用.*运算使r1和pop_v每个元素可以对应相乘,还将其乘上一个全为1的1×dim向量ones(1,dim)。

而对越限速度的处理方式用到了matlab矩阵中的逻辑索引方式,这里不再赘述,具体可以参考官方文档(查找符合条件的数组元素 - MATLAB & Simulink - MathWorks 中国)

? ? ? ? 2)位置的更新,位置的更新直接使用矩阵加法,对位置越限粒子的处理和速度越限时的处理一致。

? ? ? ? 3)更新群体所有的适应度的方法和上面提到的一样,而更新群体最优和个体最优时则需要使用到if语句和逻辑索引。

经过我们的处理,除了迭代求最优解,其他所有的循环语句都被消除了,修改后完整的代码如下:

 

运行结果:

? ? ? ? ?求出的最优解也很接近实际最优解[0,0],同时求解时间从接近1秒大幅减小到0.06秒,减小的比例达到了惊人的94%!!

当然,由于粒子群算法是一个随机搜索,时间也具有偶然性,我们多试几次,求平均值,结果如表1所示:?

表1 优化前和优化后代码运行时间对比

次数优化前/秒优化后/秒
10.972730.06014
20.948610.058207
31.05260.056668
40.970830.056835
51.07510.058857
60.95470.055463
70.984520.060969
81.19330.057191
90.982350.060772
101.04970.05734
平均值1.0184440.0582442

即使是平均值,也相差了94.28%,和我们之前对比的结果相差不大。

? ? ? ? 这是一个二维小规模的优化问题,从时间的减少上可能看不出很大的效果,但如果问题的规模很大,算法运行时动不动就要好几个小时,即使能提升50%的运行效率,也能大大节省我们的时间。